Purpose: Although epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been proven more effective for patients with lung adenocarcinoma with EGFR-activating mutation rather than wild type, the former group still includes approximately 30% nonresponders. The molecular basis of this substantial response heterogeneity is unknown. Our purpose was to seek molecular aberrations contributing to disease progression at the genome-wide level and identify the prognostic signature unique to patients with EGFR-activating mutation.
Patients and methods: We first investigated the molecular differences between tumors with EGFR-activating mutation and wild-type tumors by conducting high-density array comparative genomic hybridization on a collection of 138 adenocarcinoma tissues. We then used an independent group of 114 patients to validate the clinical relevance of copy-number alterations (CNAs) in predicting overall and disease-free survival. Finally, focusing on 23 patients with EGFR mutation receiving EGFR-TKI treatment, we investigated the association between CNAs and response to EGFR-TKIs.
Results: We identified chromosome regions with differential CNAs between tumors with EGFR-activating mutation and wild-type tumors and found the aberration sites to cluster highly on chromosome 7p. A cluster of six representative chromosome 7p genes predicted overall and disease-free survival for patients with EGFR-activating mutation but not for those with wild type. Importantly, simultaneous presence of more genes with increased CNAs in this cluster correlated with less favorable response to EGFR-TKIs in patients with EGFR-activating mutation.
Conclusion: Our results shed light on why responses to EGFR-TKIs are heterogeneous among patients with EGFR-activating mutation. They may lead to better patient management in this population.