The invention of intracytoplasmic sperm injection (ICSI) has possibly been the most important development in reproductive medicine, one that has given hope to thousands of infertile couples worldwide. However, concerns remain regarding the safety of this method since it is a more invasive procedure than in vitro fertilization (IVF), since a spermatozoon is injected into the oocyte cytoplasm. Using mice derived from IVF technology as a control, we assessed the influence of invasive microinjection in the process of transferring sperm into oocyte cytoplasm in ICSI procedure on the development and physiologic function of resultant offspring. Our results demonstrated that mice produced from ICSI and IVF had no significant difference in phenotypic indices including body weight, forelimb physiology, and learning and memory ability. However, increased spermatocyte apoptosis was observed in the testis of adult ICSI mice, when compared with IVF mice. And, decreased testis weight and marked damage of spermatogenic epithelia were found in aged ICSI mice. Furthermore, proteomic analysis verified that most of the differentiated proteins in testes between adult ICSI and IVF mice were those involved in regulation of apoptosis pathways. Our results demonstrated that the microinjection manipulation used in the ICSI procedure might pose potential risks to the fertility of male offspring. The changed expression of a series of proteins relating to apoptosis or proliferation might contribute to it. Further studies are necessary to better understand all the risks of ICSI.