TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29

J Am Soc Nephrol. 2011 Aug;22(8):1462-74. doi: 10.1681/ASN.2010121308. Epub 2011 Jul 22.

Abstract

TGF-β/Smad3 signaling promotes fibrosis, but the development of therapeutic interventions involving this pathway will require the identification and ultimate targeting of downstream fibrosis-specific genes. In this study, using a microRNA microarray and real-time PCR, wild-type mice had reduced expression of miR-29 along with the development of progressive renal fibrosis in obstructive nephropathy. In contrast, Smad3 knockout mice had increased expression of miR-29 along with the absence of renal fibrosis in the same model of obstruction. In cultured fibroblasts and tubular epithelial cells, Smad3 mediated TGF-β(1)-induced downregulation of miR-29 by binding to the promoter of miR-29. Furthermore, miR-29 acted as a downstream inhibitor and therapeutic microRNA for TGF-β/Smad3-mediated fibrosis. In vitro, overexpression of miR-29b inhibited, but knockdown of miR-29 enhanced, TGF-β(1)-induced expression of collagens I and III by renal tubular cells. Ultrasound-mediated gene delivery of miR-29b either before or after established obstructive nephropathy blocked progressive renal fibrosis. In conclusion, miR-29 is a downstream inhibitor of TGF-β/Smad3-mediated fibrosis and may have therapeutic potential for diseases involving fibrosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Fibroblasts / cytology
  • Fibrosis / pathology*
  • Kidney Diseases / pathology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • MicroRNAs / antagonists & inhibitors
  • MicroRNAs / metabolism*
  • Promoter Regions, Genetic
  • Signal Transduction*
  • Smad3 Protein / metabolism*
  • Transforming Growth Factor beta / metabolism*
  • Treatment Outcome

Substances

  • MIRN29 microRNA, mouse
  • MicroRNAs
  • Smad3 Protein
  • Smad3 protein, mouse
  • Transforming Growth Factor beta