Influence of high-pressure processing on the profile of polyglutamyl 5-methyltetrahydrofolate in selected vegetables

J Agric Food Chem. 2011 Aug 24;59(16):8709-17. doi: 10.1021/jf201120n. Epub 2011 Aug 2.

Abstract

In plants, folate occurs predominantly as 5-methyltetrahydrofolate (5MTHF) polyglutamyl forms. Differences in stability and bioavailability of food folate compared to synthetic folic acid have been attributed to the presence of the polyglutamyl chain. High-pressure processing (HPP) was tested for whether it might shorten polyglutamyl chains of 5MTHF species in fresh vegetables by enabling action of native γ-glutamylhydrolase (GGH). A validated ultrahigh-performance reversed-phase liquid chromatography-tandem mass spectrometry method using stable isotope as internal standard was applied for characterizing 5MTHF polyglutamyl profiles. HPP conditions included 300, 450, and 600 MPa at 30 °C for 0 or 5 min, and vegetables were vacuum-packed before treatment. Investigated vegetables included cauliflower (Brassica oleracea), baby carrots (Daucus carota), and carrot greens (D. carota). HPP treatment caused conversion of polyglutamyl 5MTHF species to short-chain and monoglutamyl forms. Maximal conversion of polyglutamyl folate to monoglutamyl folate occurred at the highest pressure/time combination investigated, 600 MPa/30 °C/5 min. Under this condition, cauliflower monoglutamyl folate increased nearly 4-fold, diglutamyl folate 32-fold, and triglutamyl folate 8-fold; carrot monoglutamyl increased 23-fold and diglutamyl 32-fold; and carrot greens monoglutamyl increased 2.5-fold and the diglutamyl form 19-fold. Although some folate degradation was observed at certain intermediate HPP conditions, total 5MTHF folate was largely preserved at 600 MPa/5 min. Thus, HPP of raw vegetables is a feasible strategy for enhancing vegetable monoglutamate 5MTHF.

MeSH terms

  • Brassica / chemistry
  • Chromatography, High Pressure Liquid
  • Daucus carota / chemistry
  • Food Handling / methods*
  • Pressure*
  • Pteroylpolyglutamic Acids / analysis*
  • Tandem Mass Spectrometry
  • Tetrahydrofolates / analysis*
  • Vegetables / chemistry*

Substances

  • Pteroylpolyglutamic Acids
  • Tetrahydrofolates
  • 5-methyltetrahydrofolate