Both selenium and allophycocyanin (APC) have been reported to show novel antioxidant activities. In this study, a fast protein liquid chromatographic method for purification of selenium-containing allophycocyanin (Se-APC) from selenium-enriched Spirulina platensis and the protective effect of Se-APC on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress have been described. After fractionation by ammonium sulfate precipitation, and separation by DEAE-Sepharose ion-exchange and Sephacryl S-300 size exclusion chromatography, Se-APC with purity ratio (A652/A280) of 5.30 and Se concentration of 343.02 μg g(-1) protein was obtained. Se-APC exhibited stronger antioxidant activity than APC by scavenging ABTS (2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid) and AAPH free radicals. The oxidative hemolysis and morphological changes induced by AAPH in human erythrocytes were effectively reversed by coincubation with Se-APC. Lipid oxidation induced by the pro-oxidant agent cupric chloride in human plasma, as evaluated by formation of conjugated diene, was blocked by Se-APC. The accumulation of malondialdehyde, loss of reduced glutathione, and increase in enzyme activities of glutathione peroxidase and reductase induced by AAPH in human erythrocytes were effectively suppressed by Se-APC. Furthermore, Se-APC significantly prevented AAPH-induced intracellular reactive oxygen species (ROS) generation. Taken together, our results suggest that Se-APC demonstrates application potential in treatment of diseases in which excess production of ROS acts as a casual or contributory factor.