How do the characteristics of sounds influence the allocation of visual-spatial attention? Natural sounds typically change in frequency. Here we demonstrate that the direction of frequency change guides visual-spatial attention more strongly than the average or ending frequency, and provide evidence suggesting that this cross-modal effect may be mediated by perceptual experience. We used a Go/No-Go color-matching task to avoid response compatibility confounds. Participants performed the task either with their heads upright or tilted by 90°, misaligning the head-centered and environmental axes. The first of two colored circles was presented at fixation and the second was presented in one of four surrounding positions in a cardinal or diagonal direction. Either an ascending or descending auditory-frequency sweep was presented coincident with the first circle. Participants were instructed to respond to the color match between the two circles and to ignore the uninformative sounds. Ascending frequency sweeps facilitated performance (response time and/or sensitivity) when the second circle was presented at the cardinal top position and descending sweeps facilitated performance when the second circle was presented at the cardinal bottom position; there were no effects of the average or ending frequency. The sweeps had no effects when circles were presented at diagonal locations, and head tilt entirely eliminated the effect. Thus, visual-spatial cueing by pitch change is narrowly tuned to vertical directions and dominates any effect of average or ending frequency. Because this cross-modal cueing is dependent on the alignment of head-centered and environmental axes, it may develop through associative learning during waking upright experience.
Copyright © 2011 Elsevier B.V. All rights reserved.