Stable field emission from arrays of vertically aligned free-standing metallic nanowires

Nanotechnology. 2008 May 28;19(21):215601. doi: 10.1088/0957-4484/19/21/215601. Epub 2008 Apr 21.

Abstract

We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost fabrication and large surfaces. This technique offers an excellent control of the orientation, shape and nanowires density. It is applied to fabricate field emission arrays with a good control of the emission site density. We have prepared Co, Ni, Cu and Rh nanowires with a height of 3 µm, a diameter of 80 nm and a density of ∼10(7) cm(-2). The electron field emission measurements and total energy distributions show that the as-grown nanowires exhibit a complex behaviour, first with emission activation under high field, followed by unstable emission. A model taking into account the effect of an oxide layer covering the nanowire surface is developed to explain this particular field emission behaviour. Finally, we present an in situ cleaning procedure by ion bombardment that collectively removes this oxide layer, leading to a stable and reproducible emission behaviour. After treatment, the emission current density is ∼1 mA cm(-2) for a 30 V µm(-1) applied electric field.