Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSe(x)Te(1-x) nanocrystals

Nanotechnology. 2006 Aug 28;17(16):4041-7. doi: 10.1088/0957-4484/17/16/008. Epub 2006 Jul 18.

Abstract

A series of ternary tetrapodal nanocrystals of CdSe(x)Te(1-x) with x = 0 (CdTe), 0.23, 0.53, 0.78, 1 (CdSe) were synthesized and used to fabricate hybrid nanocrystal/polymer solar cells. Herein, the nanocrystals acted as electron acceptors, and poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) was used as an electron donor. It was found that the open circuit voltage (V(oc)), short-circuit current (J(sc)) and power conversion efficiency (η) of the devices all increased with increasing Se content in the CdSe(x)Te(1-x) nanocrystals under identical experimental conditions. The solar cell based on the blend of tetrapodal CdSe nanocrystals and MEH-PPV (9:1 w/w) showed the highest power conversion efficiency of 1.13% under AM 1.5, 80 mW cm(-2), and the maximum incident photon to converted current efficiency (IPCE) of the device reached 47% at 510 nm. The influence of nanocrystal composition on the photovoltaic properties of the hybrid solar cells was explained by the difference of the band level positions between MEH-PPV and the nanocrystals.