Mouse complete stasis model of inferior vena cava thrombosis

J Vis Exp. 2011 Jun 15:(52):2738. doi: 10.3791/2738.

Abstract

Venous thromboembolism (VTE) includes both deep vein thrombosis (DVT) and pulmonary embolism (PE). In the United States (U.S.), the high morbidity and mortality rates make VTE a serious health concern (1-2). After heart disease and stroke, VTE is the third most common vascular disease (3). In the U.S. alone, there is an estimated 900,000 people affected each year, with 300,000 deaths occurring annually (3). A reliable in vivo animal model to study the mechanisms of this disease is necessary. The advantages of using the mouse complete stasis model of inferior vena cava thrombosis are several. The mouse model allows for the administration of very small volumes of limited availability test agents, reducing costs dramatically. Most promising is the potential for mice with gene knockouts that allow specific inflammatory and coagulation factor functions to be delineated. Current molecular assays allow for the quantitation of vein wall, thrombus, whole blood, and plasma for assays. However, a major concern involving this model is the operative size constraints and the friability of the vessels. Also, due to the small IVC sample weight (mean 0.005 grams) it is necessary to increase animal numbers for accurate statistical analysis for tissue, thrombus, and blood assays such as real-time polymerase chain reaction (RT-PCR), western blot, enzyme-linked immunosorbent (ELISA), zymography, vein wall and thrombus cellular analysis, and whole blood and plasma assays (4-8). The major disadvantage with the stasis model is that the lack of blood flow inhibits the maximal effect of administered systemic therapeutic agents on the thrombus and vein wall.

Publication types

  • Video-Audio Media

MeSH terms

  • Animals
  • Disease Models, Animal*
  • Mice
  • Vena Cava, Inferior*
  • Venous Thrombosis*