Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been strikingly effective in lung cancers harboring activating EGFR mutations. Unfortunately, the cancer cells eventually acquire resistance to EGFR-TKI. Approximately 50% of the acquired resistance involves a secondary T790M mutation. To overcome the resistance, we focused on EGFR suppression using microRNA-7 (miR-7), targeting multiple sites in the 3'-untranslated region of EGFR mRNA. Two EGFR-TKI-sensitive cell lines (PC-9 and H3255) and two EGFR-TKI-resistant cell lines harboring T790M (RPC-9 and H1975) were used. We constructed miR-7-2 containing miR-7-expressing plasmid. After transfection of the miR-7-expressing plasmid, using cationic liposomes, a quantitative PCR and dual luciferase assay were conducted to examine the efficacy. The antiproliferative effect was evaluated using a cell count assay and xenograft model. Protein expression was examined by Western blotting. The miR-7 expression level of the transfectants was approximately 30-fold higher, and the luciferase activity was ablated by 92%. miR-7 significantly inhibited cell growth not only in PC-9 and H3255 but also in RPC-9 and H1975. Expression of insulin receptor substrate-1 (IRS-1), RAF-1, and EGFR was suppressed in the four cell lines. Injection of the miR-7-expressing plasmid revealed marked tumor regression in a mouse xenograft model using RPC-9 and H1975. EGFR, RAF-1, and IRS-1 were suppressed in the residual tumors. These findings indicate promising therapeutic applications of miR-7-expressing plasmids against EGFR oncogene-addicted lung cancers including T790M resistance by liposomal delivery.