Rationale and objectives: The aim of this study was to assess the relationship between immune state and cerebral signal intensity abnormalities (SIAs) on T2-weighted magnetic resonance images in subjects with human immunodeficiency virus type 1 infection and highly active antiretroviral therapy.
Materials and methods: Thirty-two subjects underwent a total of 109 magnetic resonance studies. The presence of human immunodeficiency virus-associated neurocognitive disorder, categorized CD4(+) T lymphocyte count, and plasma viral load were assessed for relationship with the severity and interval change of SIAs for different anatomic locations of the brain.
Results: Subjects with multifocal patterns of SIAs had CD4(+) cell counts < 200 cells/μL in 66.0%, whereas subjects with diffuse patterns of SIAs had CD4(+) cell counts < 200 cells/μL in only 31.4% (P < .001). Subjects without SIAs in the basal ganglia had CD4(+) cell counts < 200 cells/μL in 37.0%, whereas subjects with minor and moderate SIAs in the basal ganglia had CD4(+) cell counts < 200 cells/μL in 78.3% and 80.0%, respectively (P < .005). The percentage of subjects with CD4(+) cell counts < 200 cells/μL was 85.7% when there were progressive periventricular SIA changes and 45.5% when periventricular SIA changes were stable in follow-up (P < .05).
Conclusions: The presence and progression of cerebral SIAs on T2-weighted magnetic resonance images reflecting cerebral infection with human immunodeficiency virus are significantly related to impaired immune state as measured by CD4(+) cell count.
Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.