Herein we detail the development of a simple, rapid, and sensitive method for quantitative detection of influenza A virus using dynamic light scattering (DLS) and gold nanoparticle (AuNP) labels. Influenza-specific antibodies are conjugated to AuNPs, and aggregation of the AuNP probes is induced upon addition of the target virus. DLS is used to measure the extent of aggregation and the mean hydrodynamic diameter is correlated to virus concentration. The effects of nanoparticle concentration and size on the analytical performance of the assay were systematically investigated. It was determined that decreasing the AuNP probe concentration improves the detection limit while the effect of changing the AuNP size is minimal. Optimization of the assay provided a detection limit of <100 TCID(50)/mL which is 1-2 orders of magnitude improved over commercial diagnostic kits without increasing the assay time or complexity. Additionally, this assay was demonstrated to perform equivalently for influenza virus prepared in different biological matrices.