Ecological distribution of homobaric and heterobaric leaves in tree species of Malaysian lowland tropical rainforest

Am J Bot. 2007 May;94(5):764-75. doi: 10.3732/ajb.94.5.764.

Abstract

Tree species can generally be classified into two groups, heterobaric and homobaric leafed species, according to whether bundle-sheath extensions (BSEs) are found in the leaf (heterobaric leaf) or not (homobaric leaf). In this study, we study whether the leaf type is related to the growth environment and/or life form type, even in a tropical rain forest, where most trees have evergreen leaves that are generally homobaric. Accordingly, we investigated the distribution of leaf morphological differences across different life forms of 250 tree species in 45 families in a tropical rainforest. In total, 151 species (60%) in 36 families had homobaric leaves, and 99 species (40%) in 21 families had heterobaric leaves. We found that the proportion of heterobaric and homobaric leaf species differed clearly across taxonomic groups and life form types, which were divided into five life form types by their mature tree heights (understory, subcanopy, canopy, and emergent species) and as canopy gap species. Most understory (94%) and subcanopy (83%) species such as Annonaceae had homobaric leaves. In contrast, heterobaric leaf trees appeared more frequently in the canopy species (43%), the emergent species (96%) (such as Dipterocarpaceae), and the canopy gap species (62%). Our results suggest that tree species in the tropical rainforest adapt to spatial differences in the environmental conditions experienced at the mature height of each tree species, such as light intensity and vapor pressure difference, by having differing leaf types (heterobaric or homobaric) because these types potentially have different physiological and/or mechanical functions.