Problem: Treg cells constitute the main cell population that enables cancer cells to evade immune surveillance. An alteration in the Treg cell population might correspond to the diminishment of the tumour mass in patients with cancer and could therefore be a useful marker of the intensity of the selective suppression of the host immune system and also of the degree of radicalism of a procedure. Certainly, it is well known that in order for anti-cancer therapy to succeed the proper immune response against cancer cells must be restored. Furthermore, monitoring the level of selective immune system suppression during cancer therapy might yield information that would support a decision to supplement standard therapy by immunotherapy or to increase the degree of radicalism of the applied therapy.
Method of study: We examined the Treg cell populations in the peripheral blood of a group of patients treated surgically for ovarian cancer. In each patient, the peripheral blood samples were collected both prior to and 1 day after the surgical procedure, and then again 5 days after the procedure. The presence of regulatory T cells in the samples was analyzed by means of flow cytometry.
Results: In our study, the percentages of FOXP3(+) cells in the subpopulation of CD4(+) T lymphocytes found in the peripheral blood of the patients before the surgical intervention were statistically significantly higher than those observed in the peripheral blood of these same patients after the surgical procedure.
Conclusion: It would seem that the alteration in the Treg cell subpopulation could be a key factor in determining the status of the tumour microenvironment. Most likely, it could provide information about whether the proper level of anti-cancer immune response could be restored. The possibility of restoring the immune response may directly correspond to the degree of radicalism of the surgical intervention.
© 2011 John Wiley & Sons A/S.