Simultaneous determination of the adsorption constant and the photoinduced electron transfer rate for a CdS quantum dot-viologen complex

J Am Chem Soc. 2011 Jul 6;133(26):10146-54. doi: 10.1021/ja2010237. Epub 2011 Jun 13.

Abstract

Transient absorption (TA) spectroscopy of solution-phase mixtures of colloidal CdS quantum dots (QDs) with acid-derivatized viologen molecules, N-[1-heptyl],N'-[3-carboxypropyl]-4,4'-bipyridinium dihexafluorophosphate (V(2+)), indicates electron transfer occurs from the conduction band of the QD to the LUMO of V(2+) after photoexcitation of a band-edge exciton in the QD. Analysis of the magnitude of the ground state bleach of the QD as a function of the molar ratio QD:V(2+) yields the QD-ligand adsorption constant, K(a) (4.4 × 10(4) M(-1)) for V(2+) ligands adsorbed in geometries conducive to electron transfer. The value of K(a), together with the measured rates of (i) formation of the V(+•) electron transfer product and (ii) recovery of the ground state bleach of the QD, enables determination of the intrinsic rate constant for charge separation, k(CS,int) ~ 1.7 × 10(10) s(-1), the rate for a single QD-V(2+) donor-acceptor pair. This analysis confirms previous reports that the number of ligands adsorbed to each QD is well-described by a Poisson distribution. This is the first report where the QD-ligand charge transfer and binding equilibria are quantitatively investigated simultaneously with a single technique.