We have investigated the novel single-molecule magnet (NEt(4))[Mn(2)(5-Brsalen)(2)(MeOH)(2)Cr(CN)(6)] (1; 5-Brsalen = N,N'-ethylenebis(5-bromosalicylidene)iminato anion) using spectroscopic as well as magnetization and susceptibility measurements. Frequency-domain Fourier-transform terahertz electron paramagnetic resonance (FDFT THz-EPR) based on the generation of THz radiation from a synchrotron in combination with inelastic neutron scattering (INS) allows for the discrimination between intermultiplet and intramultiplet transitions. Together with ac/dc magnetic susceptibility measurements the obtained set of data provides a complete characterization of the lowest energetic magnetic excitations. We find that the new compound 1 exhibits much weaker intermolecular interactions than found in the closely related compound: K[Mn(2)(5-Brsalen)(2)(H(2)O)(2)Cr(CN)(6)] (2). Furthermore, two phonon lines in the vicinity of the magnetic excitations are detected.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.