Elastomeric electrospun scaffolds of poly(L-lactide-co-trimethylene carbonate) for myocardial tissue engineering

J Mater Sci Mater Med. 2011 Jul;22(7):1689-99. doi: 10.1007/s10856-011-4351-2. Epub 2011 May 27.

Abstract

In myocardial tissue engineering the use of synthetically bioengineered flexible patches implanted in the infarcted area is considered one of the promising strategy for cardiac repair. In this work the potentialities of a biomimetic electrospun scaffold made of a commercial copolymer of (L)-lactic acid with trimethylene carbonate (P(L)LA-co-TMC) are investigated in comparison to electrospun poly(L)lactic acid. The P(L)LA-co-TMC scaffold used in this work is a glassy rigid material at room temperature while it is a rubbery soft material at 37 °C. Mechanical characterization results (tensile stress-strain and creep-recovery measurements) show that at 37 °C electrospun P(L)LA-co-TMC displays an elastic modulus of around 20 MPa and the ability to completely recover up to 10% of deformation. Cell culture experiments show that P(L)LA-co-TMC scaffold promotes cardiomyocyte proliferation and efficiently preserve cell morphology, without hampering expression of sarcomeric alpha actinin marker, thus demonstrating its potentialities as synthetic biomaterial for myocardial tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry*
  • Cell Proliferation
  • Elastomers / chemistry*
  • Microscopy, Acoustic
  • Myocytes, Cardiac / cytology
  • Myocytes, Cardiac / physiology*
  • Polyesters / chemistry*
  • Rabbits
  • Tissue Engineering / methods*

Substances

  • Biocompatible Materials
  • Elastomers
  • Polyesters
  • poly(lactide-co-trimethylene carbonate)