The checkpoint kinase 1 (Chk1) is one of the major players in the signal transduction pathway set in motion in response to DNA damage which activates different cell cycle checkpoints including the G 1/S, the intra-S, G 2-M and the mitotic spindle checkpoint, contributing to the maintenance of genomic stability. Chk1 is considered a good molecular target to inhibit, in combination with other anticancer agents, to increase the sensitivity of treatment, especially in tumors with a defective G 1 checkpoint. Experimental evidence highlights the essential role of Chk1 in normal and cancer cells even under unstressed conditions, especially in controlling DNA replication and cell division. This review looks at the main functions of Chk1 and the data on Chk1 inhibitors at their preclinical and clinical development are reported. This information may suggest novel approaches for new treatments with Chk1 inhibitors in combination with anticancer agents or as single agents. The emergent synthetic lethality approach may help define the genetic background features where Chk1 inhibitors alone could be very effective.