Background: Aurora kinase ensures accurate chromosome segregation during cell cycle, maintaining genetic integrity in cell division. VX-680, a small-molecule Aurora kinase inhibitor, interferes with mitotic entry and formation of bipolar spindles. Here, we evaluated VX-680 as a potential agent for treatment of all-trans retinoid acid (ATRA)-resistant acute promyelocytic leukemia (APL) in vitro.
Methods: CD11b expression was utilized to assess cell differentiation by flow cytometry. Immunofluorescence staining was conducted to analyze formation of cell monopolar spindle. Cell proliferation was evaluated by MTT assay. Sub-G1 population and Annexin V/PI staining were used to measure cell apoptosis. Hoechst 33342 staining was applied for identifying morphological changes in nucleus of apoptotic cell. Aurora-A (Aur-A) activation and the signaling pathways involved in apoptosis were detected by Western blot. JC-1 probe was employed to measure mitochondrial depolarization.
Results: VX-680 inhibited Aur-A by reducing autophosphorylation at the activation site, Thr288, accompanied by producing monopolar mitotic spindles in APL cell line NB4-R2 that was resistant to ATRA. In addition, we found that VX-680 inhibited cell proliferation as assessed by MTT assay. Flow cytometry showed that VX-680 led to apoptotic cell death in both dose- and time-dependent manners by either Sub-G1 or Annexin V/PI analysis. Hoechst 33342 staining represented typical apoptotic cells with nuclear fragmentation in VX-680 treated cells. Importantly, VX-680 inhibition of Aurora kinase suppressed Akt-1 activation and induced mitochondrial depolarization, which eventually resulted in apoptosis by activation of caspase pathway, as indicated by increasing proteolytic cleavage of procaspase-3 and poly ADP ribose polymerase (PARP) in NB4-R2 cells.
Conclusions: Our study suggested potential clinical use of mitotic Aurora kinase inhibitor in targeting ATRA-resistant leukemic cells.