The entire phosphoprotein (P) and nucleocapsid (N) protein gene sequences and deduced amino acid sequences for 18 selected vesicular stomatitis virus isolates representative of the natural genetic diversity within the New Jersey serotype are reported. Phylogenetic analysis of the data using maximum parsimony allowed construction of evolutionary trees for the individual genes and the combined N, P, and glycoprotein (G) genes of these viruses. Virtually identical rates of nucleotide substitutions were found for each gene, indicating that evolution of these genes occurs at essentially the same rate. Although up to 19 and 17% sequence differences were evident in the P and N genes, respectively, no variation in gene length or evidence of recombinational rearrangements was found. However, striking evolutionary differences were observed among the amino acid sequences of vesicular stomatitis virus New Jersey N, P, and G proteins. The N protein amino acid sequence was the most highly conserved among the different isolates, indicating strong functional and structural constraints. Conversely, the P protein amino acid sequences were highly variable, indicating considerably fewer constraints or greater evolutionary pressure on the P protein. Much of the remarkable amino acid variability of the P protein resided in a hypervariable domain located between amino acids 153 and 205. The variability within this region would be consistent with it playing a structural role as a spacer to maintain correct conformational presentation of the separate active domains of this multifunctional protein. In marked contrast, the adjacent domain I of the P protein (previously thought to be under little evolutionary constraint) contained a highly conserved region. The colocalization of a short, potentially functional overlapping open reading frame to this region may explain this apparent anomaly.