Active microrheology and simultaneous visualization of sheared phospholipid monolayers

Nat Commun. 2011:2:312. doi: 10.1038/ncomms1321.

Abstract

Two-dimensional films of surface-active agents-from phospholipids and proteins to nanoparticles and colloids-stabilize fluid interfaces, which are essential to the science, technology and engineering of everyday life. The 2D nature of interfaces present unique challenges and opportunities: coupling between the 2D films and the bulk fluids complicates the measurement of surface dynamic properties, but allows the interfacial microstructure to be directly visualized during deformation. Here we present a novel technique that combines active microrheology with fluorescence microscopy to visualize fluid interfaces as they deform under applied stress, allowing structure and rheology to be correlated on the micron-scale in monolayer films. We show that even simple, single-component lipid monolayers can exhibit viscoelasticity, history dependence, a yield stress and hours-long time scales for elastic recoil and aging. Simultaneous visualization of the monolayer under stress shows that the rich dynamical response results from the cooperative dynamics and deformation of liquid-crystalline domains and their boundaries.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Microscopy, Fluorescence / instrumentation
  • Microscopy, Fluorescence / methods*
  • Phospholipids / chemistry*
  • Rheology / instrumentation
  • Rheology / methods*
  • Surface Properties
  • Viscosity

Substances

  • Phospholipids