Aggregation (AGN) of freshly precipitated calcium oxalate crystals was photometrically studied in urine of 30 calcium stone patients and 30 controls, in solutions containing urinary macromolecules (UMS) and in an inhibitor free control solution (CS). Crystals were produced by oxalate titration and crystallization was monitored measuring optical density (OD). Tests were repeated adding hydroxyapatite (HAP) to urine and UMS and adding citrate and pyrophosphate (PPi) to UMS of the controls. AGN was recognized as a rapid OD decrease being at least three times faster than sedimentation of single crystals (p < 0.001) and used to calculate an extent of AGN (EA%). The time between the end of titration and the beginning of AGN was determined as suspension stability (SS). The main effect of urinary inhibitors was retardation of AGN without changing EA, SS being higher in urine than UMS (p < 0.001) and in UMS than CS (p < 0.001). In urine of 63% of controls but only in 33% of patients, no AGN was recorded (p < 0.05). The high inhibitory activity of urine could not be reproduced in UMS even in combination with 3.5 mM citrate or 0.05 mM PPi. 0.05 mg/mL HAP reduced SS in all urine samples to low values and increased the rate of rapid OD decrease, being a measure for the size of aggregates. Retarding AGN of crystals during their passage through the kidney seems to be an important mechanism to prevent stone formation during crystalluria. The promotion of AGN by HAP reveals a new role of Randall's plaques in nephrolithiasis.