Critical magnetic transition in TbNi2Mn--magnetization and Mössbauer spectroscopy

J Phys Condens Matter. 2011 Jun 1;23(21):216002. doi: 10.1088/0953-8984/23/21/216002. Epub 2011 May 9.

Abstract

The structural and magnetic properties of the TbNi(2)Mn(x) series (0.9 ≤ x ≤ 1.10) have been investigated using x-ray diffraction, field- and temperature-dependent AC magnetic susceptibility, DC magnetization (5-340 K; 0-5 T) and (57)Fe Mössbauer spectroscopy (5-300 K). TbNi(2)Mn(x) crystallizes in the MgCu(2)-type structure (space group Fd3m). The additional contributions to the magnetic energy terms from transition-metal-transition-metal interactions (T-T) and rare-earth-transition-metal interactions (R-T) in RNi(2)Mn compounds contribute to their increased magnetic ordering temperatures compared with RNi(2) and RMn(2). Both the lattice constant a and the Curie temperature T(C) exhibit maximal values at the x = 1 composition indicating strong magnetostructural coupling. Analyses of the AC magnetic susceptibility and DC magnetization data of TbNi(2)Mn around the Curie temperature T(C) = 147 K confirm that the magnetic transition is second order with critical exponents β = 0.77 ± 0.12, γ = 1.09 ± 0.07 and δ = 2.51 ± 0.06. These exponents establish that the magnetic interactions in TbNi(2)Mn are long range despite mixed occupancies of Tb and Mn atoms at the 8a site and vacancies. The magnetic entropy - ΔS(M) around T(C) is proportional to (μ(0)H/T(C))(2/3) in agreement with the critical magnetic analyses. The Mössbauer spectra above T(C) are fitted by two sub-spectra in agreement with refinement of the x-ray data while below T(C) three sub-spectra are required to represent the three inequivalent local magnetic environments.

Publication types

  • Research Support, Non-U.S. Gov't