Genome-wide copy-number variation analysis identifies common genetic variants at 20p13 associated with aggressiveness of prostate cancer

Carcinogenesis. 2011 Jul;32(7):1057-62. doi: 10.1093/carcin/bgr082. Epub 2011 May 5.

Abstract

The genetic determinants for aggressiveness of prostate cancer (PCa) are poorly understood. Copy-number variations (CNVs) are one of the major sources for genetic diversity and critically modulate cellular biology and human diseases. We hypothesized that CNVs may be associated with PCa aggressiveness. To test this hypothesis, we conducted a genome-wide common CNVs analysis in 448 aggressive and 500 nonaggressive PCa cases recruited from Johns Hopkins Hospital (JHH1) using Affymetrix 6.0 arrays. Suggestive associations were further confirmed using single-nucleotide polymorphisms (SNPs) that tagged the CNVs of interest in an additional 2895 aggressive and 3094 nonaggressive cases, including those from the remaining case subjects of the JHH study (JHH2), the NCI Cancer Genetic Markers of Susceptibility (CGEMS) Study, and the CAncer of the Prostate in Sweden (CAPS) Study. We found that CNP2454, a 32.3 kb deletion polymorphism at 20p13, was significantly associated with aggressiveness of PCa in JHH1 [odds ratio (OR) = 1.30, 95% confidence interval (CI): 1.01-1.68; P = 0.045]. The best-tagging SNP for CNP2454, rs2209313, was used to confirm this finding in both JHH1 (P = 0.045) and all confirmation study populations combined (P = 1.77 × 10(-3)). Pooled analysis using all 3353 aggressive and 3584 nonaggressive cases showed the T allele of rs2209313 was significantly associated with an increased risk of aggressive PCa (OR = 1.17, 95% CI: 1.07-1.27; P = 2.75 × 10(-4)). Our results indicate that genetic variations at 20p13 may be responsible for the progression of PCa.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Base Sequence
  • Chromosomes, Human, Pair 20*
  • DNA Copy Number Variations*
  • DNA Primers
  • Genetic Predisposition to Disease*
  • Genome, Human*
  • Humans
  • Male
  • Polymerase Chain Reaction
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / pathology*

Substances

  • DNA Primers