Thermal decomposition of condensed-phase nitromethane from molecular dynamics from ReaxFF reactive dynamics

J Phys Chem B. 2011 May 26;115(20):6534-40. doi: 10.1021/jp1104054. Epub 2011 May 4.

Abstract

We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH(3)NO(2)) using molecular dynamics with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000-3000 K) and density 1.97 g/cm(3) for times up to 200 ps. At T = 3000 K the first reaction in the decomposition of nitromethane is an intermolecular proton transfer leading to CH(3)NOOH and CH(2)NO(2). For lower temperatures (T = 2500 and 2000 K) the first reaction during decomposition is often an isomerization reaction involving the scission of the C-N bond the formation of a C-O bond to form methyl nitrate (CH(3)ONO). Also at very early times we observe intramolecular proton transfer events. The main product of these reactions is H(2)O which starts forming following those initiation steps. The appearance of H(2)O marks the beginning of the exothermic chemistry. Recent quantum-mechanics-based molecular dynamics simulations on the chemical reactions and time scales for decomposition of a crystalline sample heated to T = 3000 K for a few picoseconds are in excellent agreement with our results, providing an important, direct validation of ReaxFF.