Marine teleosts actively excrete SO₄²⁻ and keep the plasma concentration of this ion much lower than that of environmental seawater (SW). We used the eel as a model to study the excretory mechanism of SO₄²⁻ because this euryhaline species changes SO₄²⁻ regulation drastically after transfer from freshwater (FW) to SW. Time-course studies showed that plasma SO₄²⁻ concentration decreased 3 days after transfer of eels from FW to SW, while urine SO₄²⁻ concentration increased on 1 day. Detailed analyses showed that urine SO₄²⁻ concentration increased linearly from 6 h after SW transfer; however, this did not immediately translate to increased SO₄²⁻ excretion because the volume of urine was decreased. We identified five SO₄²⁻ transporters in the eel kidney. Three of these (Slc26a1, Slc26a6b and Slc26a6c) are expressed in both SW- and FW-acclimated eels while Slc26a6a and Slc13a1 are expressed in SW-acclimated eels and FW-acclimated eels, respectively. We showed that changes in Slc26a6a and Slc13a1 gene expression occurred 1-3 days after SW transfer. In SW eel kidneys, immunohistochemistry using specific antisera against each transporter protein showed that Slc26a6a and Slc26a6c are localized on the apical membrane of the P1 segment of the proximal tubule, while Slc26a6b is localized on the apical membrane and Slc26a1 on the basolateral membrane of the P2 segment. The current study revealed complex molecular mechanisms of SO₄²⁻ excretion in the SW eel kidney that involve segment-specific localization of multiple Slc transporters in proximal tubules and modulation of their expression in different SO₄²⁻ environments. This precise regulatory mechanism may endow the eel with euryhalinity.