Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway

Plant Physiol. 2011 Jun;156(2):596-604. doi: 10.1104/pp.111.175372. Epub 2011 Apr 20.

Abstract

Cell expansion in plants requires cell wall biosynthesis and rearrangement. During periods of rapid elongation, such as during the growth of etiolated hypocotyls and primary root tips, cells respond dramatically to perturbation of either of these processes. There is growing evidence that this response is initiated by a cell wall integrity-sensing mechanism and dedicated signaling pathway rather than being an inevitable consequence of lost structural integrity. However, the existence of such a pathway in root tissue and its function in a broader developmental context have remained largely unknown. Here, we show that various types of cell wall stress rapidly reduce primary root elongation in Arabidopsis (Arabidopsis thaliana). This response depended on the biosynthesis of 1-aminocyclopropane-1-carboxylic acid (ACC). In agreement with the established ethylene signaling pathway in roots, auxin signaling and superoxide production are required downstream of ACC to reduce elongation. However, this cell wall stress response unexpectedly does not depend on the perception of ethylene. We show that the short-term effect of ACC on roots is partially independent of its conversion to ethylene or ethylene signaling and that this ACC-dependent pathway is also responsible for the rapid reduction of root elongation in response to pathogen-associated molecular patterns. This acute response to internal and external stress thus represents a novel, noncanonical signaling function of ACC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids, Cyclic / biosynthesis
  • Amino Acids, Cyclic / metabolism*
  • Arabidopsis / cytology*
  • Arabidopsis / drug effects
  • Arabidopsis / growth & development*
  • Arabidopsis / ultrastructure
  • Benzamides / pharmacology
  • Cell Wall / drug effects
  • Cell Wall / metabolism*
  • Ethylenes / metabolism
  • Indoleacetic Acids / metabolism
  • Models, Biological
  • Plant Roots / cytology*
  • Plant Roots / drug effects
  • Plant Roots / growth & development*
  • Plant Roots / ultrastructure
  • Reactive Oxygen Species / metabolism
  • Signal Transduction* / drug effects
  • Stress, Physiological / drug effects

Substances

  • Amino Acids, Cyclic
  • Benzamides
  • Ethylenes
  • Indoleacetic Acids
  • Reactive Oxygen Species
  • 1-aminocyclopropane-1-carboxylic acid
  • isoxaben
  • ethylene