Ataxia Telangiectasia (AT) cells exhibit suboptimal activation of radiation-induced cell cycle checkpoints despite having a wild type p53 genotype. Reducing or eliminating this delay could restore p53 function and reinstate normal cellular response to genotoxic stress. Here we show that the levels of Nuclephosmin (NPM), NPM phosphorylated at Serine 125, p53, p53 phosphorylated at Serine 15 and Serine 392 and the levels of Nucleolin (NCL) are high in AT fibroblasts compared to normal cells. Transfection of a functional ATM into AT fibroblasts reduced p53, phospo-p53, phospho-NPM and NCL levels to wild type fibroblasts levels. Our data indicate that ATM regulates phospho-NPM and NCL indirectly through the Protein Phosphatase 1 (PP1). Both, NPM and NCL interact with p53 and hinder its phosphorylation at Serine 15 in response to bleomycin. Moreover, NPM and NCL are phosphorylated by several of the same kinases targeting p53 and could potentially compete with p53 for phosphorylation in AT cells. In addition, our data indicate that down regulation of NCL and to a lesser extent NPM increase the number of AT cells arrested in G2/M in response to bleomycin. Together this data indicate that the lack of PP1 activation in AT cells result in increased NPM and NCL protein levels which prevents p53 phosphorylation in response to bleomycin and contributes to a defective G2/M checkpoint.