Background: Granulocyte colony-stimulating factor (G-CSF), a hematopoietic cytokine, was recently used to treat patients of acute myocardial infarction with beneficial effect. However, controversy exists as some patients developed re-stenosis and worsened condition post G-CSF delivery. This study presents a new disease model to study G-CSF induced cardiac thrombosis and delineate its possible mechanism. We used iron loading to mimic condition of chronic cardiac dysfunction and apply G-CSF to mice to test our hypothesis.
Methods and results: Eleven out of fifteen iron and G-CSF treated mice (I+G) showed thrombi formation in the left ventricular chamber with impaired cardiac function. Histological analysis revealed endothelial fibrosis, increased macrophage infiltration and tissue factor expression in the I+G mice hearts. Simvastatin treatment to I+G mice attenuated their cardiac apoptosis, iron deposition, and abrogated thrombus formation by attenuating systemic inflammation and leukocytosis, which was likely due to the activation of pAKT activation. However, thrombosis in I+G mice could not be suppressed by platelet receptor inhibitor, tirofiban.
Conclusions: Our disease model demonstrated that G-CSF induces cardiac thrombosis through an inflammation-thrombosis interaction and this can be attenuated via statin therapy. Present study provides a mechanism and potential therapy for G-CSF induced cardiac thrombosis.