Close apposition of nerve and mast cells is viewed as a functional unit of neuro-immune mechanisms, and it is sustained by trans-homophilic binding of cell adhesion molecule-1 (CADM1), an Ig superfamily member. Cerebral nerve-mast cell interaction might be developmentally modulated, because the alternative splicing pattern of four (a-d) types of CADM1 transcripts drastically changed during development of the mouse cerebrum: developing cerebrums expressed CADM1b and CADM1c exclusively, while mature cerebrums expressed CADM1d additionally and predominantly. To probe how individual isoforms are involved in nerve-mast cell interaction, Neuro2a neuroblastoma cells that express CADM1c endogenously were modified to express additionally either CADM1b (Neuro2a-CADM1b) or CADM1d (Neuro2a-CADM1d), and they were cocultured with mouse bone marrow-derived mast cells (BMMCs) and BMMC-derived cell line IC-2 cells, both of which expressed CADM1c. BMMCs were found to adhere to Neuro2a-CADM1d neurites more firmly than to Neuro2a-CADM1b neurites when the adhesive strengths were estimated from the femtosecond laser-induced impulsive forces minimally required for detaching BMMCs. GFP-tagging and crosslinking experiments revealed that the firmer adhesion site consisted of an assembly of CADM1d cis-homodimers. When Neuro2a cells were specifically activated by histamine, intracellular Ca(2+) concentration was increased in 63 and 38% of CADM1c-expressing IC-2 cells that attached to the CADM1d assembly site and elsewhere, respectively. These results indicate that CADM1d is a specific neuronal isoform that enhances nerve-mast cell interaction, and they suggest that nerve-mast cell interaction may be reinforced as the brain grows mature because CADM1d becomes predominant.