We report the first experimental demonstration of combined spatial and temporal control of light transmission through opaque media. This control is achieved by solely manipulating spatial degrees of freedom of the incident wave front. As an application, we demonstrate that the present approach is capable of forming bandwidth-limited ultrashort pulses from the otherwise randomly transmitted light with a controllable interaction time of the pulses with the medium. Our approach provides a new tool for fundamental studies of light propagation in complex media and has the potential for applications for coherent control, sensing and imaging in nano- and biophotonics.