The pharmaceutical ethynylestradiol (EE) is a potent endocrine modulator. Application enlargement of ethynylestradiol in clinics and abuse in livestock farming and fishing make it important to explore ethynylestradiol toxicological action on vertebrate embryonic development and to establish an in vivo method for EE toxicity detection efficiently and conveniently. In the present study, using a model animal zebrafish and 17alpha-ethynylestradiol as a representative compound, we have investigated EE2 teratogenicity, target tissues and target genes on zebrafish embryo. The results show that median teratogenesis concentration (TC50) of EE2 is 0.8 microg x mL(-1), and median lethal dose (LD50) is 3.3 microg x mL(-1). Targets of EE2 action were implicated in brain, eyes, heart, muscle, skeleton, pigment and viscera. Embryonic cardiac arrhythmia caused by EE2 is probably resulted from heart abnormal structure. The embryonic stage sensitive to EE2 mainly started at cleavage and last up to the organogenesis with time-accumulating effect. RT-PCR results indicate that EE2 treatment disturbed gene expression pattern at the early period of zebrafish embryonic development by suppressing transcription of gene boz that promotes brain development, upregulating genes for trunk and tail, such as ntl, spt, shh, and perturbing Nodal signal expression of TGFbeta superfamily, for example, cyc, sqt and oep. Using zebrafish, an efficient in vivo method for quick evaluation of EE toxicity on embryonic development has been developed.