BIM-extra long (BIM(EL)), a pro-apoptotic BH3-only protein and part of the BCL-2 family, is degraded by the proteasome following activation of the ERK1/2 signalling pathway. Although studies have demonstrated poly-ubiquitylation of BIM(EL) in cells, the nature of the ubiquitin chain linkage has not been defined. Using ubiquitin-binding domains (UBDs) specific for defined ubiquitin chain linkages, we show that BIM(EL) undergoes K48-linked poly-ubiquitylation at either of two lysine residues. Surprisingly, BIM(EL)ΔKK, which lacks both lysine residues, was not poly-ubiquitylated but still underwent ERK1/2-driven, proteasome-dependent turnover. BIM has been proposed to be an intrinsically disordered protein (IDP) and some IDPs can be degraded by uncapped 20S proteasomes in the absence of poly-ubiquitylation. We show that BIM(EL) is degraded by isolated 20S proteasomes but that this is prevented when BIM(EL) is bound to its pro-survival target protein MCL-1. Furthermore, knockdown of the proteasome cap component Rpn2 does not prevent BIM(EL) turnover in cells, and inhibition of the E3 ubiquitin ligase β-TrCP, which catalyses poly-Ub of BIM(EL), causes Cdc25A accumulation but does not inhibit BIM(EL) turnover. These results provide new insights into the regulation of BIM(EL) by defining a novel ubiquitin-independent pathway for the proteasome-dependent destruction of this highly toxic protein.