Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning

Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):e99-105. doi: 10.1016/j.ijrobp.2010.12.060. Epub 2011 Mar 4.

Abstract

Purpose: The potential role of four-dimensional (4D) positron emission tomography (PET)/computed tomography (CT) in radiation treatment planning, relative to standard three-dimensional (3D) PET/CT, was examined.

Methods and materials: Ten patients with non-small-cell lung cancer had sequential 3D and 4D [(18)F]fluorodeoxyglucose PET/CT scans in the treatment position prior to radiation therapy. The gross tumor volume and involved lymph nodes were contoured on the PET scan by use of three different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; a technique with a constant threshold of standardized uptake value (SUV) greater than 2.5; and an automatic segmentation technique. For each technique, the tumor volume was defined on the 3D scan (VOL3D) and on the 4D scan (VOL4D) by combining the volume defined on each of the five breathing phases individually. The range of tumor motion and the location of each lesion were also recorded, and their influence on the differences observed between VOL3D and VOL4D was investigated.

Results: We identified and analyzed 22 distinct lesions, including 9 primary tumors and 13 mediastinal lymph nodes. Mean VOL4D was larger than mean VOL3D with all three techniques, and the difference was statistically significant (p < 0.01). The range of tumor motion and the location of the tumor affected the magnitude of the difference. For one case, all three tumor definition techniques identified volume of moderate uptake of approximately 1 mL in the hilar region on the 4D scan (SUV maximum, 3.3) but not on the 3D scan (SUV maximum, 2.3).

Conclusions: In comparison to 3D PET, 4D PET may better define the full physiologic extent of moving tumors and improve radiation treatment planning for lung tumors. In addition, reduction of blurring from free-breathing images may reveal additional information regarding regional disease.

Publication types

  • Evaluation Study

MeSH terms

  • Adenocarcinoma / diagnostic imaging
  • Adenocarcinoma / pathology
  • Adenocarcinoma / radiotherapy
  • Aged
  • Aged, 80 and over
  • Carcinoma, Non-Small-Cell Lung / diagnostic imaging*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Carcinoma, Non-Small-Cell Lung / radiotherapy
  • Carcinoma, Squamous Cell / diagnostic imaging
  • Carcinoma, Squamous Cell / pathology
  • Carcinoma, Squamous Cell / radiotherapy
  • Female
  • Fluorodeoxyglucose F18*
  • Humans
  • Imaging, Three-Dimensional / methods
  • Lung Neoplasms / diagnostic imaging*
  • Lung Neoplasms / pathology
  • Lung Neoplasms / radiotherapy
  • Lymph Nodes / diagnostic imaging
  • Male
  • Mediastinum / diagnostic imaging
  • Middle Aged
  • Movement
  • Multimodal Imaging / methods*
  • Multimodal Imaging / standards
  • Positron-Emission Tomography*
  • Radiopharmaceuticals*
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Respiration
  • Tomography, X-Ray Computed*
  • Tumor Burden

Substances

  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18