Rapid improvements in high-throughput experimental technologies make it nowadays possible to study the expression, as well as changes in expression, of whole transcriptomes under different environmental conditions in a detailed view. We describe current approaches to identify genome-wide functional RNA transcripts (experimentally as well as computationally), and focus on computational methods that may be utilized to disclose their function. While genome databases offer a wealth of information about known and putative functions for protein-coding genes, functional information for novel non-coding RNA genes is almost nonexistent. This is mainly explained by the lack of established software tools to efficiently reveal the function and evolutionary origin of non-coding RNA genes. Here, we describe in detail computational approaches one may follow to annotate and classify an RNA transcript.