A quasi-Newton acceleration for high-dimensional optimization algorithms

Stat Comput. 2011 Jan 4;21(2):261-273. doi: 10.1007/s11222-009-9166-3.

Abstract

In many statistical problems, maximum likelihood estimation by an EM or MM algorithm suffers from excruciatingly slow convergence. This tendency limits the application of these algorithms to modern high-dimensional problems in data mining, genomics, and imaging. Unfortunately, most existing acceleration techniques are ill-suited to complicated models involving large numbers of parameters. The squared iterative methods (SQUAREM) recently proposed by Varadhan and Roland constitute one notable exception. This paper presents a new quasi-Newton acceleration scheme that requires only modest increments in computation per iteration and overall storage and rivals or surpasses the performance of SQUAREM on several representative test problems.