Purpose: A number of protocols have been published to induce retinal determination from human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC). Although all these studies have shown some degree of expression of markers of retinal cells, fewer than 30 markers are typically used to characterize the ESC-derived retinal cells. Hence, it is not known whether they express all the genes present in normal developing retinal cells. To assess the efficiency of their retinal determination protocol at the transcriptome level and to understand the changes in human retinal gene expression patterns during development, the authors conducted a microarray-based analysis comparing human retina to hESC-derived retinal cells.
Methods: The authors extracted total RNA from 60-day, 80-day, and 96-day human fetal retina and hESC-derived retinal cells at 3 weeks and 9 weeks after induction. RNA was subjected to analysis using a commercial microarray. Data were normalized using Affymetrix Power Tools and analyzed using commercial microarray software.
Results: On K-median clustering analysis, the authors found that overall there was a very high correlation between genes expressed in human fetal retina and those in ESC-derived retinal cultures. The cultures were at similar developmental ages to the corresponding fetal retinal ages. They found only 1% of the genes on the array to be expressed at a higher level in ESC-derived retinal cells than in fetal retina, and most of these were expressed in the retinal pigment epithelium and ciliary epithelium.
Conclusions: In sum, gene array profiling provides an effective method for characterization of the efficiency of directed differentiation of hESCs to retinal cells.