Variability in pulmonary function following rapid altitude ascent to the Amundsen-Scott South Pole station

Eur J Appl Physiol. 2011 Sep;111(9):2221-8. doi: 10.1007/s00421-011-1864-9. Epub 2011 Feb 16.

Abstract

The impact of acute altitude exposure on pulmonary function is variable. A large inter-individual variability in the changes in forced expiratory flows (FEFs) is reported with acute exposure to altitude, which is suggested to represent an interaction between several factors influencing bronchial tone such as changes in gas density, catecholamine stimulation, and mild interstitial edema. This study examined the association between FEF variability, acute mountain sickness (AMS) and various blood markers affecting bronchial tone (endothelin-1, vascular endothelial growth factor (VEGF), catecholamines, angiotensin II) in 102 individuals rapidly transported to the South Pole (2835 m). The mean FEF between 25 and 75% (FEF(25-75)) and blood markers were recorded at sea level and after the second night at altitude. AMS was assessed using Lake Louise questionnaires. FEF(25-75) increased by an average of 12% with changes ranging from -26 to +59% from sea level to altitude. On the second day, AMS incidence was 36% and was higher in individuals with increases in FEF(25-75) (41 vs. 22%, P = 0.05). Ascent to altitude induced an increase in endothelin-1 levels, with greater levels observed in individuals with decreased FEF(25-75). Epinephrine levels increased with ascent to altitude and the response was six times larger in individuals with decreased FEF(25-75). Greater levels of endothelin-1 in individuals with decreased FEF(25-75) suggest a response consistent with pulmonary hypertension and/or mild interstitial edema, while epinephrine may be upregulated in these individuals to clear lung fluid through stimulation of β(2)-adrenergic receptors.

Publication types

  • Clinical Trial
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acute Disease
  • Adult
  • Altitude Sickness / epidemiology
  • Altitude Sickness / etiology
  • Altitude Sickness / physiopathology
  • Altitude*
  • Antarctic Regions
  • Blood Pressure / physiology
  • Female
  • Heart Rate / physiology
  • Humans
  • Incidence
  • Individuality
  • Lung / physiology*
  • Lung / physiopathology
  • Male
  • Middle Aged
  • Mountaineering / physiology*
  • Respiratory Physiological Phenomena
  • Time Factors