Factors contributing to infection risk after cord blood transplantation (CBT) include the use of anti-thymocyte globulin (ATG), prolonged neutropenia, and failure to transfer immunity. In the present study, we investigated the potential of double-unit CBT without ATG to reduce the risk of infection and evaluated the nature of serious infections in the first year after CBT using this approach. Seventy-two predominantly adult patients underwent CBT for hematologic malignancies; of these, 52 patients received myeloablative conditioning, and 20 received nonmyeloablative conditioning. The peak incidences of bacterial infections (32%), fungal infections (14%), and bacterial/fungal pneumonias (10%) occurred in the first 30 days posttransplantation. Three such infections contributed to early mortality. The peak incidence of viral infections was 31-60 days posttransplantation, affecting 30% of patients. Cytomegalovirus (CMV) was the most common viral infection. CMV infections occurring before day 120 (n = 23) had no relationship with graft-versus-host disease (GVHD), whereas CMV infections occurring after day 120 (n = 5), along with all cases of Epstein-Barr virus viremia (n = 5) and adenoviral enteritis (n = 2), occurred exclusively in the context of GVHD therapy or corticosteroid use for another indication. Viral infections had the highest lethality: 2 were a direct cause of death, and 3 contributed to death. Patients exhibited steady immune recovery, achieving a median CD3(+)4(+) T cell count >200 cells/μL by day 120 post-CBT, and no infection-related deaths occurred after day 120. Our results suggest that double-unit CBT without ATG is associated with prompt T cell recovery, and, unlike in CBT incorporating ATG, infection is rarely a primary cause of death. However, CBT without ATG is associated with a significant risk of GVHD, and serious infections remain a challenge, especially in the setting of GVHD. New strategies are needed to further reduce infectious complications after CBT; these will require earlier neutrophil recovery and more effective prevention of GVHD, ideally without the profound T cell depletion associated with ATG therapy.
Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.