Distribution of intrinsic plasmid replicase genes and their association with carbapenem-hydrolyzing class D beta-lactamase genes in European clinical isolates of Acinetobacter baumannii

Antimicrob Agents Chemother. 2011 May;55(5):2154-9. doi: 10.1128/AAC.01661-10. Epub 2011 Feb 7.

Abstract

Ninety-six genetically diverse multidrug-resistant clinical isolates of Acinetobacter baumannii from 25 hospitals in 17 European countries were screened by PCR for specific carbapenemase-hydrolyzing class D β-lactamase (CHDL) genes and by PCR-based replicon typing for the presence of 19 different plasmid replicase (rep) gene homology groups (GRs). Results were confirmed by DNA sequencing where necessary. All 96 isolates contained at least 1 (with a maximum of 4) of the 19 groups of rep genes. Groups detected were GR6 (repAci6; 93 isolates), GR2 (including repAci1 [67 isolates] and repAci2 [3 isolates]), GR16 (repApAB49; 12 isolates), GR12 (p2ABSDF0001; 10 isolates), GR3 (repAci3; 4 isolates), GR4 (repAci4; 3 isolates), GR10 (repAciX; 1 isolate), and GR14 (repp4AYE; 1 isolate). Variations in rep gene content were observed even among epidemiologically related isolates. Genes encoding OXA-58-like CHDLs (22 isolates) were associated with carriage of the repAci1, repAci3, repAci4, and repAciX genes, genes encoding OXA-40-like CHDLs (6 isolates) were associated with repAci2 and p2ABSDF0001, and genes encoding OXA-23-like CHDLs (8 isolates) were associated with repAci1. Most intrinsic Acinetobacter plasmids are non-self-transferable, but the almost ubiquitous repAci6 gene was strongly associated with a potential tra locus that could serve as a general system for plasmid mobilization and consequent horizontal transmission of plasmids and their associated antibiotic resistance genes among strains of A. baumannii.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acinetobacter baumannii / enzymology*
  • Acinetobacter baumannii / genetics*
  • Carbapenems / metabolism*
  • Plasmids / genetics*
  • beta-Lactamases / genetics
  • beta-Lactamases / metabolism*

Substances

  • Carbapenems
  • beta-Lactamases