Background: Antiretroviral therapy (ART) partially corrects immune dysfunction associated with HIV infection. The levels of T-cell immune activation and exhaustion after long-term, suppressive ART and their correlation with CD4 T-cell count reconstitution among ART-treated patients in African cohorts have not been extensively evaluated.
Methods: T-cell activation (CD38+HLA-DR+) and immune exhaustion (PD-1+) were measured in a prospective cohort of patients initiated on ART; 128 patient samples were evaluated and subcategorized by CD4 reconstitution after long-term suppressive treatment: Suboptimal [median CD4 count increase 129 (-43-199) cells/μl], N = 34 ], optimal [282 (200-415) cells/μl, N = 64] and super-optimal [528 (416-878) cells/μl, N = 30].
Results: Both CD4+ and CD8 T-cell activation was significantly higher among suboptimal CD4 T-cell responders compared to super-optimal responders. In a multivariate model, CD4+CD38+HLADR+ T-cells were associated with suboptimal CD4 reconstitution [AOR, 5.7 (95% CI, 1.4-23, P = 0.014)]. T-cell exhaustion (CD4+PD1+ and CD8+PD1+) was higher among suboptimal relative to optimal (P < 0.001) and super-optimal responders (P < 0.001). T-cell exhaustion was significantly associated with suboptimal responders [AOR, 1.5 (95%CI, 1.1-2.1), P = 0.022].
Conclusion: T-cell activation and exhaustion persist among HIV-infected patients despite long-term, sustained HIV-RNA viral suppression. These immune abnormalities were associated with suboptimal CD4 reconstitution and their regulation may modify immune recovery among suboptimal responders to ART.