Photoacoustic imaging with a commercial ultrasound system and a custom probe

Ultrasound Med Biol. 2011 Mar;37(3):484-92. doi: 10.1016/j.ultrasmedbio.2010.12.005. Epub 2011 Jan 26.

Abstract

Building photoacoustic imaging (PAI) systems by using stand-alone ultrasound (US) units makes it convenient to take advantage of the state-of-the-art ultrasonic technologies. However, the sometimes limited receiving sensitivity and the comparatively narrow bandwidth of commercial US probes may not be sufficient to acquire high quality photoacoustic images. In this work, a high-speed PAI system has been developed using a commercial US unit and a custom built 128-element piezoelectric-polymer array (PPA) probe using a P(VDF-TrFE) film and flexible circuit to define the elements. Since the US unit supports simultaneous signal acquisition from 64 parallel receive channels, PAI data for synthetic image formation from a 64- or 128-element array aperture can be acquired after a single or dual laser firing, respectively. Therefore, two-dimensional (2-D) B-scan imaging can be achieved with a maximum frame rate up to 10 Hz, limited only by the laser repetition rate. The uniquely properties of P(VDF-TrFE) facilitated a wide -6 dB receiving bandwidth of over 120% for the array. A specially designed 128-channel preamplifier board made the connection between the array and the system cable, which not only enabled element electrical impedance matching but also further elevated the signal-to-noise ratio (SNR) to further enhance the detection of weak photoacoustic signals. Through the experiments on phantoms and rabbit ears, the good performance of this PAI system was demonstrated.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Elasticity Imaging Techniques / instrumentation*
  • Equipment Design
  • Equipment Failure Analysis
  • Image Enhancement / instrumentation*
  • Phantoms, Imaging
  • Rabbits
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Transducers*