In stable state asthmatic patients (AP) without any airway obstruction, the capacity of peripheral blood polymorphonuclear neutrophils (PMN) to produce 5-lipoxygenase metabolites and to migrate, was investigated and compared with the response in healthy subjects (HS). After calcium-ionophore A23187 stimulation, PMN from AP and HS produced LTB4, its hydroxylated derivatives: omega-OH-and omega-CO2H-LTB4) (omega-LTB4, i.e 6-trans-LTB4 and 5,6-diHETE isomers, and 5-HETE. We found an increase in LTB4 (+59%), omega-LTB4 (+39%), 6-trans-LTB4 (+128%), and free 5-HETE (+63%) generation of AP as compared with HS. Unstimulated migration was enhanced in AP (122 +/- 27 PMN/10 high power fields (hpf) in AP versus 74 +/- 25 PMN/10 hpf in HS, p less than 0.025) and suggested a greater capacity of PMN from AP to migrate. This was confirmed by the PAF-induced chemotaxis studies which showed, in AP, a greater PAF-sensitivity of PMN (10(-6) M versus 10(-5) M in HS) and a greater chemotaxis response (600 +/- 50 PMN versus 200 +/- 35 PMN in HS). In AP, we compared the capacity of PMN to generate LTB4 and 5-HETE with their capacity to migrate. We found an inverse correlation (r = 0.86, p less than 0.007) of intracellular free 5-HETE with chemotaxis to PAF.