Recombinant human interleukin-4 (rhIL-4) and transforming growth factor-beta 1 (TGF-beta 1) suppressed the induction of lymphokine-activated killer (LAK) activity induced by recombinant human interleukin-2 (rhIL-2) in peripheral blood lymphocytes. DNA synthesis and the expression of the p55 alpha chain of the IL-2 receptor (Tac antigen) were also inhibited. The inhibitory effect was greatest when these factors were added during the first 48 h of a 4-day culture, with reduced cytolytic activity against both natural killer (NK) resistant and NK-sensitive tumour cell line targets. The suppressive action of both cytokines was accompanied by a reduction in tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) levels in lymphocyte culture supernatants. Recombinant human IFN-gamma (rhIFN-gamma), but not recombinant human TNF-alpha (rhTNF-alpha) was able to overcome the inhibitory effect of recombinant human interleukin-4 (rhIL-4) on LAK induction and DNA synthesis but not Tac antigen expression. However, cytotoxicity induced by rhIFN-gamma alone was also suppressed by rhIL-4 and TGF-beta 1, inferring that rhIFN-gamma-mediated abrogation of rhIL4 suppression was not simply a direct IL-2-independent effect on cytotoxicity. In addition, rhIL-4 did not increase TGF-beta production from rhIL-2-activated peripheral blood mononuclear cells, suggesting that rhIL-4 did not mediate reduction of rhIL-2 responses through the induction of TGF-beta release.