The E3 ubiquitin ligase Cbl-b regulates T cell activation thresholds and has been associated with protecting against type 1 diabetes, but its in vivo role in the process of self-tolerance has not been examined at the level of potentially autoaggressive CD4(+) T cells. In this study, we visualize the consequences of Cbl-b deficiency on self-tolerance to lysozyme Ag expressed in transgenic mice under control of the insulin promoter (insHEL). By tracing the fate of pancreatic islet-reactive CD4(+) T cells in prediabetic 3A9-TCR × insHEL double-transgenic mice, we find that Cbl-b deficiency contrasts with AIRE or IL-2 deficiency, because it does not affect thymic negative selection of islet-reactive CD4(+) cells or the numbers of islet-specific CD4(+) or CD4(+)Foxp3(+) T cells in the periphery, although it decreased differentiation of inducible regulatory T cells from TGF-β-treated 3A9-TCR cells in vitro. When removed from regulatory T cells and placed in culture, Cblb-deficient islet-reactive CD4(+) cells reveal a capacity to proliferate to HEL Ag that is repressed in wild-type cells. This latent failure of T cell anergy is, nevertheless, controlled in vivo in prediabetic mice so that islet-reactive CD4(+) cells in the spleen and the pancreatic lymph node of Cblb-deficient mice show no evidence of increased activation or proliferation in situ. Cblb deficiency subsequently precipitated diabetes in most TCR:insHEL animals by 15 wk of age. These results reveal a role for peripheral T cell anergy in organ-specific self-tolerance and illuminate the interplay between Cblb-dependent anergy and other mechanisms for preventing organ-specific autoimmunity.