One of the major functions of the ovary is the biosynthesis of steroid hormones, which are essential for the development of secondary sexual characteristics at puberty, for subsequent ovarian function, and for the establishment and maintenance of pregnancy. Increases in our understanding of the molecular mechanisms governing the control of ovarian steroidogenesis have greatly improved our understanding of the female reproductive cycle, as well as the pathogenesis of reproductive disorders such as polycystic ovarian syndrome and premature ovarian failure. The pituitary gonadotropins follicle stimulating hormone (FSH) and luteinizing hormone (LH) are the main endocrine regulators of ovarian steroidogenesis, and act by directly or indirectly modulating the activity of a multitude of intracellular signaling pathways. The WNT/CTNNB1 pathway, which is now believed to be a significant contributor to the regulation of ovarian steroidogenesis, could be one of the pathways modulated by gonadotropin signaling. This review will focus on the emerging role of WNT/CTNNB1 signaling in the regulation of steroidogenesis, with emphasis on potential mechanisms of interaction with FSH/LH signaling in ovarian granulosa and luteal cells.