Hole injection/transport materials derived from Heck and sol-gel chemistry for application in solution-processed organic electronic devices

J Am Chem Soc. 2011 Feb 9;133(5):1375-82. doi: 10.1021/ja1061517. Epub 2010 Dec 30.

Abstract

An organosilicate polymer, based on N,N'-diphenyl-N,N'-bis(4-((E)-2-(triethoxysilyl)vinyl)phenyl)biphenyl-4,4'-diamine (TEVS-TPD) with extended conjugation between the Si atom and the aromatic amine, was prepared under mild conditions via sequential Heck and sol-gel chemistry and used as an alternative to poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the most widely used planarizing hole injection/transport layer in solution-processed organic electronic devices. Spin-coating TEVS-TPD polymer solutions yield defect-free, uniform, thin films with excellent adhesion to the ITO electrode. Upon thermal cross-linking at 180 °C, the cross-linked polymer exhibits excellent solvent resistance and electrochemical stability. Solution-processed organic light emitting diode (OLED) devices using iridium-based triplet emitting layers and cross-linked TEVS-TPD films as a hole injection/transport layer show significantly improved performance including lower leakage current, lower turn-on voltage, higher luminance, and stability at high current density, as compared to the control device prepared with PEDOT:PSS.