Expression of estrogen and progesterone receptors and estrogen metabolizing enzymes in different breast cancer cell lines

Chem Biol Interact. 2011 May 30;191(1-3):206-16. doi: 10.1016/j.cbi.2010.12.013. Epub 2010 Dec 21.

Abstract

Prolonged exposure to estrogens is a significant risk factor for the development of breast cancer. Estrogens exert carcinogenic effects by stimulating cell proliferation or through oxidative metabolism that forms DNA-damaging species. In the present study, we aimed to provide a better understanding of estrogen metabolism and actions in breast cancer, and to characterize model breast cancer cell lines. We determined the expression profiles of the genes for the estrogen and progesterone receptors, and for 18 estrogen-metabolizing enzymes in eight cell lines: MCF-7, MCF-10A, T47D, SKBR3, MDA-MB-231, MDA-MB-361, Hs-578T and Hs-578Bst cells. Similar gene expression profiles of these receptors and enzymes for the formation of estradiol via the aromatase and sulfatase pathways were observed in the MCF-7 and T47D metastatic cell lines. The MDA-MB-361 cells expressed ESR1, ESR2 and PGR as well, but differed in expression of the estrogen-metabolizing enzymes. In the MDA-MB-231 and SKBR3 cells, all of these estrogen-forming enzymes were expressed, although the lack of ESR1 and the low levels of ESR2 expression suggested that the estrogens can only act via non-ER mediated pathways. In the non-tumorigenic MCF-10A cell line, the key enzymes of the aromatase pathway were not expressed, and the sulfatase pathway also had a marginal role. The comparison between gene expression profiles of the non-tumorigenic Hs-578Bst cells and the cancerous Hs-578T cells revealed that they can both form estrogens via the sulfatase pathway, while the aromatase pathway is less important in the Hs-578Bst cells. The Hs-578T cells showed low levels of ESR1, ESR2 and PGR expression, while only ESR1 and ESR2 expression was detected in the Hs-578Bst cells. Our data show that the cell lines examined provide the full range of model systems and should further be compared with the expression profiles of breast cancer specimens.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / enzymology
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Line, Tumor
  • Enzymes / genetics*
  • Enzymes / metabolism*
  • Estrogens / biosynthesis
  • Estrogens / metabolism*
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Receptors, Estrogen / genetics*
  • Receptors, Progesterone / genetics*

Substances

  • Enzymes
  • Estrogens
  • Receptors, Estrogen
  • Receptors, Progesterone