Measles virus (MV)-infected DC fail to promote T-cell expansion, and this could explain important aspects of measles immunosuppression. The efficiency of the immune synapse (IS) is determined by the formation of stable, stimulatory conjugates involving a spatially and timely controlled architecture. PlexinA1 (plexA1) and its co-receptor neuropilin (NP-1) have been implicated in IS efficiency, while their repulsive ligand, SEMA3A, likely acts in terminating T-cell activation. Conjugates involving MV-infected DC and T cells are unstable and not stimulatory, and thus we addressed the potential role of plexA1/NP-1 and semaphorins (SEMAs) in this system. MV does not grossly affect expression levels of plexA1/NP-1 on T cells or DC, yet prevents their recruitment towards stimulatory interfaces. Moreover, MV infection promoted early release of SEMA3A from DC, which caused loss of actin based protrusions on T cells as did the plexA4 ligand SEMA6A. SEMA3A/6A differentially modulated chemokinetic migration of T cells and conjugation with allogeneic DC. Thus, MV targets SEMA receptor function both at the level of IS recruitment, and by promoting a timely inappropriate release of their repulsive ligand, SEMA3A. To the best of our knowledge, this is the first example of viral targeting of SEMA receptor function in the IS.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.