The adsorption of six symmetrical cationic (dimethylammonium bromide) gemini surfactants with four different partially fluorinated chains at three different surfaces--the air/water, the hydrophilic silica/water, and the hydrophobic (octadecyltricholorosilane (OTS))/water--has been investigated by neutron reflectometry. The corresponding single chain trimethylammonium bromides have also been studied at the two solid surfaces. Four of the geminis with a C(6) spacer and chains with differing amounts of fluorocarbon have identical limiting areas per molecule at the air/water interface (106 ± 5 Å(2)). This is similar to the value for the corresponding hydrocarbon gemini with a C(6) spacer and C(12) side chains, but unlike the hydrocarbon gemini, it is significantly more than twice the area per molecule of the corresponding single chain cationic. In adsorbed aggregates on hydrophilic silica the area per molecule decreases from the air/water value by an average of about 25%, indicating a substantial improvement in the packing of these geminis in the aggregate, which can be attributed to the stronger interaction between the hydrophobic chains in the interior of the aggregates. On the hydrophobic OTS surface the area per molecule in the adsorbed monolayer for three partially fluorinated geminis decreased by about 15% from the air/water value, again indicating much more favorable packing next to the hydrophobic OTS, but for one of the geminis, fC(8)C(6)-C(6)-C(6)fC(8), the change in area was reversed. This reversal is accompanied by a marked thinning of the layer, which is attributed to a shift in the balance between the interactions of the hydrocarbon spacer and fluorocarbon chain fragments and the OTS surface.